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The use of magnetic fields during the growth of semiconductor crystals from the melt 
in a Czochralski (CZ) crystal puller has shown promise in controlling the heat and 
mass transport to the growth interface. The magnetic field suppresses turbulence and 
thermal convection in the melt in which large thermal gradients are present, thus 
improving the quality of the crystal. In this paper, analytical solutions are presented 
for the isothermal melt motion and electric current density driven by the differential 
rotation of the crystal and crucible about their common vertical axis. There is an 
applied, non-uniform, axisymmetric magnetic field with only radial and axial 
components which are independent of the azimuthal coordinate. The melt motion 
with a uniform axial magnetic field represents a singular limit of the flow considered 
here: as the radial magnetic field component goes to zero, the radial and axial 
(meridional) velocity components decrease in magnitude by a factor of M-l ,  where M 
is the large Hartmann number. The uniform axial field is a singular limit because the 
centrifugal acceleration due to the azimuthal velocity is exactly perpendicular to the 
magnetic field. Since the radial isothermal motion near the growth interface controls 
the radial distributions of dopants and impurities in the crystals, a non-uniform 
axisymmetric magnetic field is better than the uniform axial field. In addition, the 
axisymmetric field avoids the detrimental deviations from axisymmetric heat and 
mass transport associated with a uniform transverse (horizontal) magnetic field. 

Two classes of shaped fields are considered, with only one class leading to the 
presence of the large meridional flow driven by differential rotation. The small 
electrical conductivity of the crystal plays an important role in determining the 
behaviour of the melt's angular velocity, which is constant along each magnetic field 
line. Results for two simple field configurations are presented in order to illustrate the 
effect of the field configuration on the nature of the meridional circulation and the 
potential for flow tailoring with the shaped field. 

1. Introduction 
In recent years, the improvement of the quality of silicon and gallium-arsenide 

crystals has been achieved with novel growth methods and through the use of 
sophisticated control systems during crystal growth. These developments reflect the 
increasing demand of the electronics industry for high-quality, large-diameter 
semiconductor crystals. The Czochralski (CZ), liquid-encapsulated Czochralski, 
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horizontal and vertical Bridgman, and float-zone systems involve growth from a 
melt with large thermal gradients. Unsteady or non-uniform heat and mass transfer 
to  the growth interface may produce high dislocation and defect densities, growth 
striations, and non-uniform dopant and impurity distributions, all of which are 
unfavourable properties in the final crystal. 

In traditional CZ crystal growth, which is the method of choice for large-diameter 
silicon crystals, the high thermal gradients in the melt produce significant buoyant 
convection, and the flow is turbulent. The crystal is rotated about its vertical axis in 
order to produce a viscous shear layer isolating the growth interface from the flow 
irregularities in the bulk of the melt. The crucible is also rotated to minimize the 
effects of any slight deviations from axisymmetry in the heaters (see figure 1 a). The 
silicon melt is contained in a quartz (SiO,) crucible which continuously erodes with 
contact to the melt, releasing oxygen and other impurities into the melt. While 
almost all of the oxygen evaporates from the free surface, the portion that remains 
in the melt is transported to the growth interface, and the oxygen and impurity 
distributions in the crystal may be non-uniform and undesirably high. The 
fluctuations in heat transfer at the growth interface cause the crystal to melt and re- 
solidify, producing defects and random growth striations which contribute to the 
micro- and macro-scale non-uniformity of the crystal (Kuroda, Kozuka & Takano 
1984). 

The use of magnetic fields to control the flow field, heat transfer and mass transfer 
during the growth of large-diameter semiconductor crystals has received considerable 
attention in the last ten years (see e.g. Langlois, Kim & Walker 1992). Owing to the 
large electrical conductivity of semiconductor melts, the application of a magnetic 
field suppresses flow across magnetic field lines, and hence alters the entire melt 
motion, through the presence of the electromagnetic Lorentz force. Recently, 
detailed theoretical and experimental work has clarified the nature of the transport 
processes in CZ growth systems when a magnetic field is applied (see e.g. Hirata & 
Hoshikawa 1989 ; Hjellming 1990 ; Ravishankar, Braggins & Thomas 1990 ; Thomas 
et al. 1990; Williams, Walker & Langlois 1990). Originally it was thought that with 
the suppression of the melt motion by the magnetic field, the heat and mass transfer 
would be such as to produce better crystals. It has since been shown that the 
magnetic field introduces a degree of complexity and sensitivity to the interactions 
between the flow field and transport processes not present in the traditional non- 
magnetic CZ growth systems, and that the effects of a magnetic field are not always 
positive. 

To date, most of the theoretical work on the transport processes in magnetic CZ 
silicon growth systems has concentrated on the application of a uniform magnetic 
field aligned with the crystal growth axis, called an axial or vertical magnetic field. 
The axisymmetry of this field is appealing, but both experimental and theoretical 
results have shown that this field configuration has serious disadvantages (Hjellming 
1990; Ravishankar et al. 1990). With the axial field, the centrifugal pumping flow 
driven by differential rotation of the crystal and crucible is highly suppressed and 
varies as Bo3, where B, is the magnetic flux density (Hjellming & Walker 1986). The 
centrifugal pumping flow provides the radial convective mass transport at  the 
growth interface needed to sweep away rejected dopants and impurities. The large 
suppression of this flow with an axial magnetic field leads to extremely large non- 
uniform radial distributions of dopants and impurities (Ravishankar et al. 1990). 

The thermally driven flows due to buoyancy and the variation of surface tension 
with temperature also affect the mass transport in several ways when an axial field 
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FIGURE 1. (a) Model Czochralski crystal growth system with a non-uniform, axisymmetric 
magnetic field B = B, r + B, z .  The cylindrical coordinates are normalized by the inside crucible 
radius. (b)  Meridional section showing subregions of the melt for M b 1. 

is applied. First, the magnitude of the thermally driven flow circulation varies as Bo2 
and depends strongly on depth, so that the relative contributions of convection and 
conduction to the total heat transfer change with depth and magnetic field strength. 
During the initial stages of growth with a field strength of 0.2 T, convective heat 
transfer dominates. As growth continues and the melt volume is depleted, the 
thermally driven flows decrease in magnitude, and conduction becomes the dominant 
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heat transfer mechanism for B = 0.2 T (Hjellming 1990). For a stronger magnetic 
field, the shift from convection- to conduction-dominated heat transfer occurs a t  a 
larger depth, i.e. a t  an earlier stage of growth. For extremely strong magnetic fields, 
conduction dominates from the beginning of crystal growth. For conventional CZ 
crystal growth, convective heat transfer dominates a t  all stages (Langlois 1984), and 
the heat input from the radiant heaters needed to sustain stable growth is low. As 
conduction becomes the primary heat transfer mechanism for magnetic CZ growth, 
the heat input needed for stable growth increases, resulting in higher temperatures 
on the vertical crucible wall (Hjellming 1990). Since the ablation or erosion of the 
crucible increases with increasing temperature, the increased oxygen levels in 
crystals grown in an axial field are due in part to the increased ablation of the 
crucible (Ravishankar et al. 1990). 

A second effect of the magnetic field on mass transfer is that turbulent mixing of 
impurities and dopants is eliminated. For species with low diffusion coefficients such 
as oxygen (D - lops m2/s), the convective mass transfer, provided by the thermally 
driven flows, is the dominant mechanism for mixing in the melt. At large depths and 
low field strengths, it  is possible that the oxygen distribution may reach a well-mixed 
steady state in the melt. However, as the depth decreases or the field strength 
increases, the thermally driven flow circulation decreases, and a well-mixed steady- 
state concentration is not achieved. Furthermore, as the melt depth decreases, the 
thermally driven flow ceases to provide a circulation of oxygen-rich fluid toward the 
free surface, where oxygen evaporates, but actually provides a direct circulation 
from the crucible to the growth interface (Hjellming & Walker 1988b). Since the 
centrifugal pumping flows are more strongly suppressed by an axial field than are the 
thermally driven flows, and also circulation decrease with depth, the former cease to 
provide a vigorous circulation for increased mixing of the dopants and impurities in 
the melt region near the growth interface as the depth decreases or the field strength 
increases. 

Some of the detrimental characteristics of the axial field can be eliminated with a 
uniform transverse or horizontal magnetic field. With the field oriented parallel to 
the growth interface, any vertical melt motion is strongly suppressed. A transverse 
field does not suppress the radial centrifugal pumping near the crystal face which 
produces more uniform radial concentration distributions, nor does this field 
suppress the flow driven by the surface tension variation, which draws fluid to the 
free surface where it can lose oxygen through evaporation. Thus this type of field 
configuration shows promise in decreasing the oxygen concentration, and improving 
the radial uniformity. The radial uniformity of oxygen is not significantly affected by 
changes in the field strength, although it is improved with increased crystal rotation 
rates (Ravishankar et al. 1990), and the radial uniformity is better than that for the 
axial field or that for conventional CZ crystal growth. 

The biggest problem for a transverse field is the enhancement of asymmetries in 
the thermal and flow fields for certain ranges of magnetic field strength (Williams 
1989). A transverse field produces a non-axisymmetric flow. For example, buoyant 
convection with a strong transverse field consists of a downward flow near the 
vertical plane composed of the crucible diameters which are parallel to the magnetic 
field, and an upward flow on both sides of this plane. As long as convection makes 
a significant contribution to the heat transfer, the temperature field is non- 
axisymmetric. This means that a point on the rotating crystal face experiences 
fluctuations in heat flux at twice the frequency of crystal rotation. One purpose of 
applying a magnetic field is to eliminate such fluctuations in the heat flux at  the 
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growth interface. A transverse magnetic field will also make the mass transport non- 
axisymmetric. Therefore, the azimuthally averaged concentrations of oxygen and 
dopants may be relatively uniform in the radial and axial directions, but the 
azimuthal variations remain (Williams et al. 1990 ; Williams 1989). 

An alternative to the uniform unidirectional axial or transverse magnetic field is 
a non-uniform axisymmetric or shaped magnetic field, which combines the 
axisymmetry of the axial field and the radial field component needed to suppress 
vertical melt motion. Hirata & Hoshikawa (1990) have reported significant 
improvements in the quality of large-diameter silicon crystals grown with an applied 
'cusp' magnetic field. This field configuration is easily produced by two solenoidal 
coils surrounding the crucible and crystal, with the fields of the two coils oriented in 
opposite directions. As the crystal grows and the melt is depleted, the field 
configuration may be changed to counteract the effects of a flow field and transport 
processes which are depth or time dependent. 

One of the attractive features of the shaped field is that the flow field can be 
tailored by the field-melt interaction, such that the heat and mass transfer are 
optimized for the growth of high-quality crystals. For example, large radial 
components of the field can be positioned at the free surface and vertical wall regions, 
where suppression of vertical motion is indicated, but increased radial heat and mass 
transport are beneficial. Additionally, a significant radial field component with a 
reduced axial component a t  the growth interface will enhance radial convective mass 
transfer. Hicks, Organ & Riley (1989) show that the oxygen distribution in the 
crystal is more uniform with a non-uniform axisymmetric magnetic field than with 
an axial field. Hicks & Riley (1989) have theoretically treated the isothermal crystal 
face boundary layer for both a uniform axial magnetic field and a uniform radial 
field. These results indicate that the magnetic field orientation has a strong influence 
on the mass transport at the growth interface. 

This paper presents analytical solutions, determined by matched asymptotic 
expansions, for the flow field due to differential crystal/crucible rotation for an 
isothermal silicon melt with a general non-uniform axisymmetric magnetic field. The 
methodology follows that of Hjellming & Walker (1986, hereinafter referred to as 
HWI). In $2, the problem is formulated for the general field. Section 3 contains the 
solutions for the azimuthal velocity, electric potential and meridional electric current 
density, with $4 containing the solutions for the meridional circulations. In  $5, two 
simple non-uniform axisymmetric field configurations are used to illustrate the 
characteristics of the meridional circulations, with the discussion following in Q 6. 

2. Problem formulation 
We consider the model CZ crystal growth system shown in figure l(a),  with 

( r ,  8, x )  as the cylindrical coordinates. The melt is silicon, with the physical properties 
listed in table 1. The system is considered to be axisymmetric so that there is no 
dependence on the azimuthal coordinate, 0, in the dependent variables or boundary 
conditions. Our first parametric assumption is that the magnetic Reynolds number, 
R, = ,urn vQRE 4 1 ,  so that the magnetic field produced by any electric currents in 
the melt or crystal can be ignored. Here, ,urn and r are the magnetic permeability and 
electrical conductivity of the melt, while Q and R, are the angular velocity and inside 
radius of the crucible, respectively. The general form of a non-uniform axisymmetric 
field is 

B = B&-, 2) r"+B,(r, x )  z", (1) 
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TABLE 1 

(a )  
Density, po 2330 kg/m3 
Kinematic viscosity, v 
Electrical conductivity, u lo6 mho/m 
Magnetic permeability, ,urn 4n x H/m 
Electric conductivity of crystal, 6u 3.16 x lo4 mho/m 

0.095 m Inside crucible radius, R, 
Crystal radius, aR, 0.038 m 
Melt depth, bR, 0.095 m 

(a) Physical constants of silicon melt; ( b )  geometry of model Czochralski system. 

3 x 10-~ ma/s 

(6)  

where r and z are unit vectors, while B satisfies the equations 

V * B = O  (2) 

and V x B = O .  (3) 

We confine the analysis to magnetic fields with field strengths of magnitude IBI 2 
0.2 T throughout the melt. Hjellming & Walker (1988a) show that, for magnetic field 
strengths greater than 0.2 T, the inertial acceleration terms are negligible, except for 
the centrifugal acceleration term. With the inertialess approximation, the Navier- 
Stokes equations are linear in the meridional velocities u, and u,, and the flow 
fields due to differential rotation, buoyancy, thermocapillarity and crystal growth 
may be found separately. Here, we consider only the centrifugal pumping flow driven 
by differential rotation of the crystal and crucible, when the melt is treated as 
isothermal and there is no 'suction' at the crystal face. For a uniform axial field, the 
meridional flow driven by differential rotation is small, and does not contribute to 
the convective heat transfer in the melt (Hjellming & Walker 1987). For the shaped 
field, the meridional flow driven by differential rotation is as large as the thermally 
driven flows, so that the centrifugal pumping flow must be included in the heat 
transfer analysis. However, the thermally driven flows are coupled to the rotationally 
driven flows through the temperature only, with the momentum transport remaining 
linear in the velocities. 

We follow the scalings of HWI for the isothermal melt problem, with the non- 
dimensional variables denoted by asterisks, where 

r = R,r*, x = R,z*; (4% b )  

j,. = uSZR,B,,j,*, j, = u-SZR,B,j,*, j, = uU,B,j,*; (6a-c) 

F =QR:B,F", p =pogR, (b - z* )+poQ2R~p*;  (7% b )  

B = B , B *  =B,(B:P+B:t);  (8) 

where U, = p 0 Q 2 R , / ( u B ~ ) .  (9) 

u,. = U,U,*, U, = Ucu;, U, = QR,u,*; (5 a-c) 

The physical properties and their symbols are listed in table 1. Here, b is the non- 
dimensional melt depth, (ur, u,, uz), (j,.,j,&), F ,  p are the velocity, electric current 
density, electric potential function and pressure, respectively. The quantity U, is the 
characteristic velocity for the meridional flow driven by the centrifugal acceleration, 
and this scale is obtained by a balance between the centrifugal acceleration and the 
electromagnetic body force. B, is a characteristic magnetic flux density of the applied 
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field, and IB*l B, 2 0.2 T everywhere, so that the inertialess approximation is valid 
in all regions of the melt. 

The non-dimensional governing equations for steady isothermal melt flows with an 
applied non-uniform axisymmetric magnetic field and with all inertial terms 
neglected, except the centrifugal acceleration, are (with the asterisks now dropped) 

For M % I (with B, = 0.2 T, 1M = 718), the melt can be subdivided into (a)  two 
inviscid core regions, ( b )  Hartmann layers with O(M-') thickness adjacent to the 
crystal face, free surface and crucible surfaces, and ( c )  an interior or free shear layer, 
which has an O(M-i) thickness, which lies along the magnetic field line through the 
point r = a and z = b,  where the crystal face and the free surface meet, and which 
separates the inner and the outer inviscid core regions. For a particular magnetic 
field configuration, these subregions are shown in figure l ( b ) .  Here, a is the non- 
dimensional crystal radius. For a uniform axial magnetic field, B, = 0 and B, = I ,  so 
that the inner and outer core regions occupy 0 d r <a and a < r < 1 respectively. 
For an axial field with B, 2 0.2 T, Langlois, Hjellming & Walker (1987) compared 
the asymptotic solutions of HWI for large Hartmann number with numerical 
simulations which incorporated the inertial acceleration terms. It was shown that the 
principal deviation between the asymptotic solutions and the full numerical 
solutions is due to the neglect of the second-order perturbation term in the azimuthal 
velocity solution. Including the inertial terms does not significantly alter the flow 
pattern for B, 2 0.2 T. For a shaped field, the minimum field strength is 0.2 T, and 
use of the large-Hartmann-number and inertialess approximations are justified. 

In  each core region, for a uniform axial field, ( l o b )  indicates thatj ,  = 0, neglecting 
the O(M-2) viscous terms ; (13) indicates that  j ,  is a function only of r,  and (1 1 c )  gives 
F as a linear function of z. Equation (1  1 a )  gives the azimuthal velocity as the radial 
derivative of F and thus u, is linear in x .  All of the core variables can be expressed 
in terms of a few integrations of functions of r which are determined by matching 
with the Hartmann-layer solutions. 

For a general non-uniform axisymmetric field, ( l o b )  indicates that Brj,-Bzjr = 0, 
neglecting O(M-2) viscous terms, which means that there is no meridional electric 
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current density in the inviscid core regions perpendicular to magnetic field lines. 
Since the meridional electric current density in the core must be along magnetic field 
lines, continuity of current (13) requires that the magnitude of the electric current 
density along each field line varies inversely as 27cr times the distance between 
magnetic field lines, where the latter is inversely proportional to the local 
dimensionless magnetic field st'rength, B(r, z )  = (B; +B$. If ( 1  1 a ,  c )  are combined to 
obtain the meridional components of Ohm's law parallel and perpendicular to a local 
magnetic field line, then the parallel component of the electric current density does 
not involve uo. This can be integrated to obtain the values of F as an integral of the 
electric current density parallel to a magnetic field line. The perpendicular component 
of Ohm's law then shows that u, is the derivative of P in the direction normal to the 
field line. 

It is this behaviour of the inviscid core variables which we shall exploit in the 
analysis of the inviscid core regions for the shaped magnetic field. To do this, a special 
orthogonal curvilinear coordinate system is introduced : (Y, 0, @), where Y(r, z )  and 
@(r ,z )  are a stream function and potential function for the magnetic field. If 
the magnetic field is a uniform axial field, Y = $r2 and @ = Z ,  the magnetic 
field coordinates coincide with the cylindrical coordinate system. The magnetic 
field coordinates will be used for the inviscid core and free shear layer, but 
cylindrical coordinates will be used for the Hartmann layers since the normal 
boundary coordinate to be stretched is z .  Transformations between the two coordinate 
systems are needed whenever the core and free shear layer solutions are matched 
with the Hartmann-layer solutions. 

Orthogonal curvilinear coordinate system based on magnetic field configuration 
Using (2 )  and (3), we define the dimensionless magnetic stream function, Y ( r ,  z ) ,  and 
the dimensionless magnetic potential function @(r,  z ) ,  where 

Since surfaces of constant Y and @ values are mutually orthogonal, we define a right- 
handed orthogonal curvilinear coordinate system with (Y, 8, @). Following Morse & 
Feshbach (1953), the metrics for the new coordinate system are 

h, = l/rB, h, = r ,  h, = l /B .  (18a-c) 

The unit vectors, perpendicular to constant coordinate surfaces are given by 

!P = (BJB) E- (B,/B) i, 
P = (BJB) if (BJB) t. 

(19) 

(20) 

The unit vectors for the cylindrical coordinate system are then 

3 = (BJR) Y+ (BJB) P, 
2 = - (B,/B) Y+ (BJB) 6. 

In the new (Y, 6 ,  0) coordinate system, B = B( Y, @) 6. Formally, for any set of 
current-carrying solenoids, the functions B( Y, @), B,( Y, @), B,( Y, @), Y( Y, @) and 
z ( Y ,  @) are known, as are B(r,z) ,  Br(r , z ) ,  Bz( r ,z ) ,  Y( r ,z)  and @(r,z ) .  
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The governing non-dimensional equations in the (Y, 8, @) coordinate system are 

(26a-c) 
i3F i3F 

j, = -rB-+Bus, j, = -Buy, j, = -B--. 
ay aas 

The boundary conditions on the velocity u, electric density j ,  and electric potential 
F ,  of the model CZ system are most easily expressed in terms of cylindrical 
coordinates. The quartz crucible is an electrical insulator, as is the atmosphere above 
the free surface, and the boundary conditions a t  these surfaces are 

u r = u Z = j Z = O ,  u s = r  a t  z = O ,  O < r < l ;  ( 2 7 ~ - d )  

u, = u, = j r  = 0, u, = 1 at r = 1 ,  0 < z < b + f ( l ) ;  (28 a-d) 

(29a-a) 
au, a% 

u = j n = - = L = O  a t  z = b+f(r) ,  a < r < 1, 
an an 

where f (  r )  is governed by 

Here, n and t denote the coordinates normal and tangential to the free surface in the 
meridional planes. Two additional non-dimensional parameters are introduced, 
namely the Bond number, Bn = yo/p,gRE, and the Froude number, Fr = Q2R,/g, 
where yo is the surface tension of the melt. The shear stresses and the pressure 
variations in the atmosphere above the free surface negligible and for typical speeds 
of rotation, Fr < 1 .  Growth of a constant-diameter crystal is associated with a 
certain free-surface slope a t  the crystal edge and (29e) could be solved for the free- 
surface shape with dfldr given a t  r = a. However, we use the traditional bulk flow 
approximation which ignores the meniscus near the crystal edge, so that f = 0, n = z 
and t = r. I n  the bulk flow approximation, the crystal-melt interface is assumed flat 
and coplanar with the flat free surface. 

The last boundary which needs to be considered is the crystal face. By taking the 
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depth as constant, with no melt depletion, the velocity boundary conditions at  the 
crystal face are 

u,.=u,=O, U O = m  at z = b ,  O < r < a .  (30 a-c) 

Here, d2 is the angular velocity of the crystal, with E < 0 indicating rotation of the 
crystal and crucible in opposite directions. 

The electrical conductivity of the crystal, cS, near the melting temperature of 
silicon is on the order of 3% of the electrical conductivity of the melt, with 6 = 
us/u = 0.0316. In most studies on magnetic CZ in an axial field, this small crystal 
conductivity is neglected and the crystal is treated as an electrical insulator. 
However, in HWI, it is shown that the resistance of the crystal is comparable to the 
resistance of the thin Hartmann layer a t  the crystal face, and the crystal and the 
Hartmann layer act as resistors in parallel. By including the crystal as part of 
the entire electric circuit of the system, the melt motion will be strongly dependent 
on the local ratio of the resistivities of the crystal and Hartmann layer and the ratio 
of the angular velocities of the crystal and crucible, B .  In  our asymptotic solution for 
M % 1 ,  we assume that 6 is comparable to M-l. 

In the crystal, the governing dimensional equations for the electric current 
density, j ,  and electric potential function F ,  are 

j ,  = 6a{ - OFs + ( ~ Q r d  x B)} , 
V - j ,  = 0,  

where the dimensional azimuthal velocity in the crystal is d2r. Using the same 
scalings (4)-(9) for the crystal variables as are used for the melt variables, the non- 
dimensional governing equations are (with asterisks dropped) 

, j 0 s  = 0, j,, = 8 ----BB,er ; (33 a-c) ( 2  ) 

Equivalently, we may write the non-dimensional form of (31) and (32) in the (Y,  8, 
@) coordinate system as 

aF , jGs = - S B L ,  j ,  = 0. a@ (36a-c) 

With an insulating atmosphere surrounding the crystal, the boundary conditions are 

j , , = O  at  r = a ,  z > b ,  

j,, =j,, F, = F at z = b ,  0 < r < a ,  
j , + O  as ZJCO, 

The conditions (37b, c )  prescribe the continuity of the normal current and voltage 
across the crystal-melt interface, while condition (37a) states that there is no normal 
current leaving the crystal. Condition ( 3 7 4  assumes an infinitely long crystal, but 
most of the electric current is confined to a small portion of the crystal near the 
crystal-melt interface, and the electric current sees a crystal with an effectively 
infinite vertical extent, as shown in HWI. 
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We present solutions for each significant subregion: (i) inner inviscid core, (0) outer 
inviscid core, (f) free shear layer or interior layer along the magnetic field line 
Yab = Y(v = a ,  x = b ) ,  (t) top Hartmann layer adjacent to the crystal face, (b) bottom 
Hartmann layer adjacent to the crucible bottom, and (s) crystal. Solutions in 
adjacent subregions are matched. The solutions for the Hartmann layer a t  the free 
surface and the vertical crucible wall are straightforward. The azimuthal problem 
governing u,, j y, j, and E is decoupled from the meridional problem involving u y, ue, 
j, and p ,  with the former providing the driving centrifugal force for meridional melt 
motion. 

3. Azimuthal problem 
The variables u,, F ,  and the meridional electric current density ( j r , j , )  or ( jy, je) are 

governed by ( l o b ) ,  ( l la ,  c), (13), (23b), (25) ,  (26a, c) and (33)-(36) with boundary 
conditions (27c, d ) ,  (28c, d ) ,  (29b, c), (30c) and (37). 

We consider first the inviscid core regions where O(M-2) terms are neglected. The 
modified governing equations in (Y, 8, @) are used. The core variables are written as 
asymptotic expansions such as P = Fc+M-1Fk+O(M-2) where c = i or o to denote 
inner or outer core, respectively. There are no O( 1)  meridional electric currents in the 
core regions, since the meridional electric current must flow along magnetic field 
lines, and each magnetic field line intersects two Hartmann layers, which can only 
match an O(M-l) normal core current. Each Hartmann layer either satisfies the 
condition that there is zero normal current at a crucible boundary or at  the free 
surface, or matches the O(M-l) normal current in the crystal. The jump in normal 
current across a Hartmann layer is a t  most O(M-l). Thus the O( 1 )  core solutions are 

Fc = Lc( !P), ueC = rdL,/dY, j ,  =jbc  = 0. (38 u d )  

Here, r = v( Y, 0). The O(M-’) core solutions are 

jl,, = 0, jl,, = BGI,. (39c, 4 
The functions Lk and Gi are functions only of Y, Qo = @(ro,  zo)  is some reference value 
of ds, and the non-dimensional magnetic field magnitude is B = B(Y,  a). From 
(38a, b )  we can see that the O(1) angular velocity in the core region is constant along 
magnetic field lines, where 

%(ly) = ( % , / T )  = G2/dY’. (40a) 

This corresponds to the axial field case where w, depends only on the radial 
coordinate. The solutions (39a, b )  indicate that the O(M-l) angular velocity varies 
linearly with @ along each magnetic field line, such that 

w ~ ( Y ,  @) = dL~/dY-(@-ds,)dG~/dY. (40b) 

From (10b)  and (13), which determine the O(M-’) meridional current density, an 
electric current stream function in the core may be defined such that 

where 
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FIGURE 2. (a) Sketch of field case I, for which no magnetic field lines contact both the crystal and 
crucible. ( b )  Sketch of field case 11, for which there are magnetic field lines which contact both the 
crystal and crucible. 

The jump in azimuthal velocity across each Hartmann layer determines the 
meridional electric current density in the layer and the adjacent core region. If there 
is an axial variation of uo across the boundary layer on the crystal face, crucible 
bottom or free surface, a component of the electromagnetic body force is required to 
balance the viscous shearing in that boundary layer. In  the axial field case, the only 
jumps in ug occur across the top and bottom Hartmann layers adjacent to the inner 
core and the free shear layer separating the two core regions, with the entire outer 
region rotating as a rigid body with the crucible. For the shaped field, the field 
configuration determines the regions of rigid-body rotation, and the Hartmann 
layers and free shear layer where the jumps in ug occur. We shall consider several 
possible model field configurations which limit the types of configurations that need 
to be evaluated. These cases are illustrated in figure 2. 

3.1. Field cme 1 
For the ‘cusp’ field configuration, shown in figure 2(a) ,  there are no magnetic field 
lines which are in contact with both the crystal and the crucible. We consider first 
the region bounded by magnetic field lines which contact the free surface and crystal. 
At the free surface there can be no jump in uo, and so there is no electric current 
generated. Thus, there will be no O(M-l) electric current density along these field 
lines. Since these field lines also contact the crystal, there may be no jump in uo 
between the core region and crystal face, since any current generated has no means 
to complete the circuit path. Therefore, the region bounded by the field lines which 
contact only the crystal and free surface must rotate as a rigid body with the crystal. 
The solutions in this entire region to O(&P2) are 

Fi = eY, u& = cr, j ,  =jGi = 0. (43 a-d) 

The solutions (43) are also the solutions in the crystal. A similar analysis can be made 
for the region bounded by the field lines which have only crucible-crucible or 



Melt motion in a Czochralski crystal puller 13 

cruciblefree surface contact. This region rotates as a rigid body with the crucible, 
and the solutions to O ( W 2 )  are 

F, = Y, u,, = r ,  j, =j@, = 0. (44 a-d) 

These two regions of different rigid-body rotation are separated by a free shear 
layer lying along a magnetic streamline which extends from a point at  r = 0 where 
B = 0 to the free surface. Then Y = 0 on this separation field line, the electric 
potential F is continuous here, and Y has opposite signs in the two regions. This free 
shear layer is similar to that to be discussed for field case 11. 

3.2. Field case II  
For this field configuration sketched in figure 2 (b ) ,  there are two separate regions : ( i )  
a region with field lines which contact both the crystal and crucible, and (ii) a region 
where the field lines have crucible-crucible or free surface-crucible contacts. For the 
latter region, the solutions are given by the rigid-body rotation solutions (44). 

The region of interest is that defined by the magnetic field lines which contact both 
the crystal and crucible. The crucible rotates with a normalized angular velocity of 
one and the crystal rotates with a normalized angular velocity of e. Since the O(1) 
angular velocity in the inner core, wi, is constant along magnetic field lines, there 
must be an O(1) variation of u, through the Hartmann layers between the inviscid 
core and the bounding surfaces. We define the inner core region to be the region 
bounded by the centreline, crystal face, crucible bottom and Yab = Y( r  = a, z = b) ,  
where !Pa, is the dividing magnetic streamline. If B is decreasing or increasing as z 
increases, the magnetic field line !Pa, will intersect the crucible bottom at r < a or 
r > a, respectively. The inner core solutions are those given in (38) and (39). 

As a preliminary step in the analysis of this region, it is useful to define several 
functions which relate the variable dependence on (Y,  @) to the variable dependence 
on ( r ,  z ) .  For the magnetic streamlines 0 d Y d Yab, we identify these by their radial 
coordinate r at z = b. Then the interval 0 d Y ( r ,  b )  < y a b  corresponds to the interval 
0 d r d a a t  z = b. Next, we define R(r )  as the radial coordinate a t  z = 0 of the 
magnetic streamline whose radial coordinate is r a t  z = b, where 

Y(R(r),O) = Y( r ,  b )  for 0 < r d a ,  (454  

Throughout the analysis we will use R to denote the radial coordinate at  z = 0 which 
corresponds to r a t  z = b, where ‘corresponds’ means along the same magnetic 
streamline. 

The last quantity is p(r,z)  which is the radial coordinate for 0 < z 6 b of the 
magnetic streamline whose radial coordinate is r a t  z = b. Thus, 

Y(p,  z )  = Y(r,  b )  for 0 < r < a and 0 d z d b ;  (46a)  

b)  = r ,  p(r,O) = R,  (4W 4 

For the analysis of the Hartmann layers, we shall assume that all magnetic 
streamlines intersecting the crystal face also intersect the crucible bottom, but the 
analysis can be generalized to the case where some of these magnetic streamlines 
intersect the vertical crucible wall. If there is a region in which the magnetic 
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streamlines Yl0 < Y d !Pa, intarsect the vertical wall, where Ylo = Y(r = 1,  z = 0 ) ,  a 
stretching of the radial coordinate and solving for the boundary layer variables is 
accomplished in a similar manner to that described below. Matching of the two 
O(M-l) boundary layers is done by looking at  the intersection region at r = 1, z = 0, 
which is an O(M-') x O(M-l) region. 

For the Hartmann layer on the crucible bottom, 0 d r < R ( a ) ,  the axial coordinate 
is stretched by substituting 2 =Hz. We stretch (lob), ( l l a ,  c )  and (13). In  the 
bottom Hartmann layer (denoted by the subscript b), jrb, uob and Fb are O( l) ,  while 
the leading-order axial current is the O(MP1)jib. The magnetic field must also be 
expanded in an asymptotic series, where 

There are no perturbations to the applied magnetic field. 

Fb(r, 2) = Li(r, 0) = Li( Y(r,  0)). 

After coordinate stretching, (1 1 c )  gives 

The stretched equations ( l o b )  and ( l l a )  govern jrb and urn. The solutions which 
satisfy the boundary condition (27d) and which match the solutions (38) are 

uOb(r>2) = {r-UBi(r,O)}exp(-ZB,(r, o))+uoi(r,o), (49a) 

jrb(r,  2) = 0) {r-uoi(r> 0))exp (-ZB,(r, 0)). (49 b )  

The stretched equation (13) with (41b), (42) and (49b) yields jib and the O(MF) 
current stream function, h: in the core at  z = 0, where 

h@, 0) = h?(r, b)  = Hi(  Y )  = R2(Wi(  Y)  - 1).  (50) 
The axial current in the bottom Hartmann layer has an additional term that is not 
present in the uniform axial field case, which is linear in 2 and proportional to the 
variation in the axial magnetic field in the radial direction. This term represents an 
internal, vertical redistribution of the radial current as the local boundary thickness 
changes inversely with Bz(r ,  0). 

In  the inner core, the values of the O(N-l) electric current streamfunction H: and 
the O( 1)  angular velocity wi = uoi/r are constant along each magnetic field line, Y = 
constant. The magnetic field line Y through the point ( r ,  b )  intersects the bottom at 
(R,O) where the jump in azimuthal velocity across the bottom Hartmann layer is 
R(wi( u) - 1). A radial current is required to produce the azimuthal component of the 
electromagnetic body force to balance the shear stresses in this jump. This radial 
current must enter the bottom Hartmann layer from the core between r = 0 and 
r = R .  It is this balance which leads to the condition (50) relating the current stream 
function Hi' and wi( u). 

For the Hartmann layer on the crystal face, the axial coordinate is stretched by 
substituting 2' = M(z  - b) .  The magnetic field is expanded in a manner similar to that 
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in (47). The solutions in the top Hartmann layer (denoted by subscript t),  which 
satisfy the stretched versions of (lob), ( l l a ,  b) and (13), satisfy boundary conditions 
(30c) and (37b, c), and match the inner core solution (38) are 

Matching the O(M-’) axial current and the current stream function hi yields 

hi(r ,b)  = h:(r,b)+ru,i(r,b)-sr2 

= Hi ( ‘u) + T2(Wi( y? - €), (53) 
where hi(r, b )  is the current stream function in the crystal evaluated at the melbsolid 
interface. 

The current stream function in the crystal is determined by solving V x j ,  = 0, using 
the definitions (41) with the subscript c replaced by a subscript s to denote the crystal 
variable, and with the boundary conditions on hi derived from conditions (37a), 
( 3 7 4 .  The boundary value problem for the current stream function in the crystal is 

hi(u,z) = 0, 

hi(r,z)+O as z - t c o ,  

The condition (55c) is derived using (14), (33a), (38b) ,  (40a), (50) and (53). At each 
point on the crystal face, the quantity y( r )  = WuB,(r, b )  is the local ratio of the 
electrical resistances of the crystal and of the top Hartmann layer. The dimensionless 
crystal resistance is da, and the local resistance of the Hartmann layer is the 
product of a dimensionless resistivity of one and the local boundary layer thickness 
(MB,(r,b))-l. This ratio is taken to be O(1) for all r .  The separation of variables 
solution for (54), (55) is 

where X ,  are the zeros of J,, J ,  being the first-order Bessel function of the first kind. 
The coefficients A ,  are found by satisfying the boundary condition (55e), for a given 
magnetic field configuration. 

In order to determine the O(1) electric potential in the crystal, (33u,c) are 
rewritten as 
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Using (56) and (14), the O( 1) electric potential in the crystal is 
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Within the crystal, the imbalance between the O( I )  electric potential and the induced 
potential due to the interaction of the rotating crystal and the magnetic field, drives 
an O(S) electric current which is small. 

If the crystal is treated as an electrical insulator, with a parametric limit of y = 

&Wdz(r ,b )  4 1, then all of the electric current flows through the top Hartmann 
layer, and the net radial currents inside the top Hartmann layer at r and inside the 
bottom Hartmann layer at R(r)  must be equal and opposite. The inner core angular 
velocity for the limit y < 1 is obtained by combining ( S O ) ,  (53) with hi(r, b )  = 0, such 
that 

R2 + er2 

R2+r2 ' 
W i ( y 3  = - 

For a uniform axial magnetic field with y 4 1 ,  then R = r ,  wi = i(1 + e )  and the 
inner core rotates as a rigid body with the average angular velocity of the crystal and 
crucible. In the shaped field case, if the magnetic field lines are spreading radially as 
z increases from 0 to b ,  then R < r and wi( Y)  will be closer to e,  the angular velocity 
of the crystal. If the magnetic field lines converge radially as z increases from 0 to b ,  
then w,(U) will be closer to 1, the angular velocity of the crucible. The angular 
velocity on each magnetic field lines is an area-weighted average of the crucible and 
crystal rotation rates, where the areas are those inside the field line at x = 0 and 
x = b, respectively. In general, the ratio R(r ) / r  varies with r for 0 d r d a ,  so that the 
inner core azimuthal motion involves shearing between magnetic field lines with 
different angular velocities wi( Y) .  

If the crystal presents the lower resistance path with the parametric limit y % 1,  
then all of the current will enter the crystal, with no radial current in the top 
Hartmann layer. Because the radial current flux through the Hartmann layer is 
related to the jump in the azimuthal velocity, there can be no jump in ug from the 
inner core to the crystal, and the inner core will then rotate as a rigid body with the 
crystal, ugi = er,  and wi(!P) = E .  

When the magnetic field is a uniform axial field, the value of y is constant across 
the crystal face for a given magnetic field strength. For the shaped field case 11, y 
may be a function of r ,  as the ratio of the local resistances of the top Hartmann layer 
and crystal depends on the local value of the axial field strength. For finite non-zero 
values of y, the angular velocity along each magnetic field line lies between the two 
values corresponding to the parametric limits y % 1, where w,(Y) = F, and y 4 1, 
where wi( !P) = (R2 + er2)/(B2 + r2),  and no O( 1) rigid-body motion is possible in the 
inner core region. By treating the crystal as a slight electrical conductor, with a 
resistance comparable to the top Hartmann layer, the amount of electric current 
entering the crystal varies between 0 (crystal is an electrical insulator) and ( 1  -e) R2 
(crystal is the lower-resistance path). Since the inner core azimuthal velocity is 
determined by the jump in electric current across the top Hartmann layer, the flow 
behaviour is highly dependent on the electric circuit model of the crystal and top 
Hartmann layer. It is this property which may allow for tailored centrifugal 
pumping flows along the crystal face, flows which are considered in the next section. 

The inner core azimuthal velocity for finite non-zero values of y may be 
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determined using (50) and (53) or, equivalently, the angular velocity oi(!P) can be 
found, where 

h,l ( r  , b ) + er2 + R2 
R2 + r2 Y=constant 

The value of oi( u) on a magnetic streamline Y(r, b )  for 0 < r < a fixes the value of 
mi in the inner core at all points along that magnetic streamline Y(p ,  2). Some results 
are presented in $5  for two specific magnetic field configurations. 

The free shear layer separates the inner and the outer inviscid cores, and 
accommodates the jump in the azimuthal velocity across the layer. It is through this 
layer that the O(M-') electric current density completes its circuit. This current 
travels down through the inviscid core along magnetic field lines, outward through 
the bottom Hartmann layer to R(a) ,  up through the free shear layer, and inward 
from r = a through the crystal and top Hartmann layer as parallel paths back into 
the core at x = b.  The current will circulate in the opposite direction for certain values 
of e. To 0(W2)), there is no current circulation in the outer region where the 
magnetic field lines have only cruciblefree surface and crucible-crucible contacts. 

For the axial field case, the free shear layer is located at r = a, and the radial 
coordinate is stretched. For the shaped field, the free shear layer exists along the 
separating magnetic streamline Y = Y ( r  = a, x = b )  = Yab. If the solutions for the 
free shear layer are sought using cylindrical coordinates, both the axial and the radial 
coordinates must be stretched. As this is a cumbersome task, the governing equations 
( 2 3 b ) ,  (25)  and (26) in the (Y, 8, @) coordinate system are used, with the coordinate 
stretching 6 = J&( Y- Yab). The free shear layer variables (denoted by subscript f )  
are 

jY f  = M-ljbf + O ( K f ) ,  j,, = M-%f + o(M-l ) ,  

U, = U, + O(M-k), 

F f  = E( !Pub) +M-%; + o(M-1). 

(61% b )  

(61 c) 

(61 4 
In addition to the asymptotic expansions for the flow variables, the radius and 
magnetic field need to be expressed in the free layer region. Here, 

where ?(@) and g ( @ )  are the radial coordinate and magnetic field strength at  each 
point @ along the magnetic field line Yab. 

The leading-order stretched equations (23b) ,  (25), (26a, c )  are 
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Combining (63) with the matching conditions for the inner and outer core gives 
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(64 b d )  

Uof/?+l, & + O ,  jl,-+O as t + + c o .  (64 e-g) 

There are three additional conditions which need to be specified in the boundary 
value problem for Uef([, @). These are the matching conditions with the intersection 
regions on the bottom ( z  = 0, for all t),  on the crystal face ( z  = b, 6 < 0) and with the 
free surface ( z  = b ,  E > 0). From HWI, the condition on the free surface, for a Froude 
number which is at most O(M-:), requires that there is no normal current at the free 
surface to O(M4) .  Therefore, the boundary condition on the current is 

j& = O  at z =  b for & >  0. ( 6 5 4  

By using the coordinate stretchings 5 = M ( @ - @ , ) ,  =M(@-@J,  where @, = 
@(r  = R(a) ,  z = 0) and Qt = @(r = a ,  z = b ) ,  in addition to the coordinate stretching 
in Y along the !Pub line, the equations (23b) ,  (25)  and (26a, c )  can be solved in the top 
and bottom intersection regions. The O ( l )  azimuthal velocity and the O(1) electric 
current component in the intersection regions, jw, have the normal exponential 
structure. Introducing j, into the stretched equation (25) gives an equation for the 
O(M-i) &. The matching conditions on j& at the top and bottom are 

j& = R ( a ) d (  Yab, @,,) "uof at CD, for all 6, 
aE 

(65b) 

The governing equation and boundary conditions (64), (65) constitute a well-posed 
boundary value problem for U,([, @). Since the variable coefficients ?(@) and B(@)  
depend only on @, a Fourier transform with respect to 5 reduces the problem to a 
linear differential equation with variable coefficients. However, this approach leads 
to an integral equation because of the discontinuity in the boundary condition at 4. 
Therefore, a purely numerical solution, with special attention to the singularity at  
( = 0, @ = Gt may be more efficient. For the discussion in the next section, the 
important fact is that the free shear layer solution exists in which U, varies from 
hi( Yab) in the inner core to r" in the outer core. For the uniform axial magnetic field, 
r" = a, B = I and the solution for the free shear layer problem (64), (65) is a simple 
error function of E( Gt - @)-; = c(b  - z)-i. Thus, the transition between the core 
angular velocities is very abrupt near z = b and gradual near z = 0. 

4. Meridional motion 
The variables (ur, u,) or ( u ~ ,  ua),j0, andp are governed by equations (lOa, c ) ,  ( l l b ) ,  

(12), ( 2 3 q  c ) ,  (24) and (26c), and by the boundary conditions (27a, b ) ,  (28a, b ) ,  
(29a, d ,  e )  and (30a,  b).  Since the azimuthal velocity has been determined in $3 ,  the 
centrifugal acceleration term is a known forcing function in the meridional 
momentum transport equations. There are two cases which need to be considered for 
the meridional flow solutions corresponding to the two field configurations which 
yield rigid-body or non-rigid-body azimuthal motion. 
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4.1. Field case 1 
The magnetic field configuration for this case has two distinct regions of rigid-body 
motion separated by a free shear layer, with the azimuthal velocity, meridional 
electric current density and electric potential function given by (43), (44). For the 
rigid-body motion, the electric potential depends linearly on Y, and the angular 
velocity o is a constant, either B or 1. For a rigid-body motion, both the azimuthal 
velocity and the centrifugal acceleration are independent of the magnetic field 
configuration at  any radial position in the melt. This means that a purely radial 
pressure gradient can exactly balance the centrifugal acceleration, and no component 
of the Lorentz force is required to balance the centrifugal acceleration. The solutions 
for the meridional motion in the core regions are 

u ,=u ,=u ly=uO= jo=o ,  

pi = p ,  + $9 or p ,  = p c  

where p ,  and pc  are two different constants. There is discontinuity in pressure across 
the free shear layer lying along the branch of the Y = 0 magnetic field line which 
separates the two core regions. This pressure discontinuity is associated with a strong 
meridional motion inside the free shear layer with a structure similar to that which 
is to be discussed for field case 11. 

4.2 Field case 11 

The outer core region rotates as a rigid body and the solutions (66a-e) apply here. 
The O(1) inner core solutions are found using the governing equations in (Y, 0, @), 
with the O ( K 2 )  viscous terms neglected. Here 

p i t y ,  @I = t(rUi(V))2++(V), (67) 

r3 d r d c  
2BdY BdY’ 

uyi = - - - (w?)---  

where a0 = @(r,,, zo) is some reference value of @, and the angular velocity is given by 
(60). There are two integration functions, P,( !P) and A (  !P), which are determined by 
matching the Hartmann layer solutions. A stream function, G, for the meridional 
velocity is defined using the continuity equations (12), (24), where 

and 

The Hartmann layers match any value of uri at x = 0 and z = b as long as the O(1) 
inner core solutions satisfies the conditions 

G(r,  0)  = G( Y ( r ,  0), @(r ,  0 ) )  = 0 

G(r ,  b )  = G( Y(r, b ) ,  @(r,  b ) )  = 0 

for 0 < r < R(a) ,  
for 0 < r d a. 

(73) 

(74) 
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In  order to apply the boundary conditions (73), (74) a t  z = 0 and z = 6 t o  the 
velocity stream function G ,  we introduce 

where 
G( Y @I = C( W.fl( y> @I +D( w f 2 (  y, @I +A( W ,  (75a) 

d wi( ul) q u l )  = --(w;(Y)), D(y) = -~ d Y  d Y  ’ 

Along a given magnetic streamline Y, the functions C( Y), D( !P) and A (  !P) are 
constant, and the integrals fl and fi vary only with @. On each magnetic streamline, 
@ has particular values a t  z = 0 and z = b, denoted by Qb and Qt, respectively, so 
that 

The boundary conditions (73), (74) are then applied along a particular magnetic 
streamline t o  the velocity stream function (75a) .  The solutions for the unknown 
functions D( Y )  and A( ul) are 

@b(V = @ ( m % O ) ,  @ t ( W  = @(r,b) .  (76) 

A(!P)  = - C ( Y ) f l ( Y , @ ~ ) - D ( y l f 2 ( Y ~ @ b ) ’  (77b) 

Using (75),  (77),  the O(1) velocity stream function (70) may be written 

G( Y, @) = -- d Y  d (u:) { lb & d@* - ( lb $$ d@*) [ & d@*] [ c$ d@*]’}. 

( 7 8 4  
Using (77a) ,  the pressure, Pi(!P), is given by 

where P, is a constant. 
For a given non-uniform axisymmetric magnetic field, the O(1) inner core 

meridional velocities, uri and uzi, are now completely determined. For a uniform 
axial magnetic field, B = 1,  p = r and 0 = 0. This axial field case represents a singular 
limit of a non-uniform field for which the centrifugal acceleration is exactly 
perpendicular to the magnetic field, the centrifugal acceleration is balanced by a 
radial pressure gradient, and there is no O(1) meridional circulation. For any 
magnetic field with a significant radial component, there is a component of the 
centrifugal acceleration along each magnetic field line, the pressure gradient cannot 
balance the centrifugal acceleration, and this imbalance accelerates the fluid until the 
associated meridional component of the electromagnetic body force re-establishes a 
balance of forces. For the axial field, the largest inner core meridional circulation is 
O(M-l), and is driven by: (i)  the axial variation of the O( 1 )  uo through each Hartmann 
layer (Hartmann-layer pumping), and (ii) by the axial variation of the O(M-l)u, in 
the inner core. For the non-uniform magnetic field, the variations of ua drive an 0 ( 1 )  
meridional circulation, so that we can ignore the O(M-l) Hartmann-layer pumping. 
The extension of the present analysis to determine the O(N-l) meridional circulation 
is straightforward (Tolley 1991). 
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For a uniform axial magnetic field, there is no jump in the O( 1) pressure across the 
free shear layer a t  r = a, and the axial variation of Uef drives an O(1) meridional 
circulation inside the free shear layer. For the non-uniform axisymmetric magnetic 
field, there is a jump in the O( 1 )  pressure across the free shear layer at Y = !Pub, and 
the component of the centrifugal acceleration which is parallel to the local magnetic 
field drives an O(&) meridional circulation inside this layer. Using the stretched 
coordinate 6 =Mi( Y- !Pub) in (23a) ,  (23c), (24) and (26b) ,  with the radial coordinate 
and magnetic field in the free shear layer given by (62) ,  and the asymptotic expansion 
for uw given by ( 6 1 ~ ) '  the appropriate asymptotic expansions in the free shear layer 
are 

(79a) 

(79b) 

(79 4 

pf = p: +M-;pi + O(M-l), 
UDf = MU, +x&, + O( l), 

uw = n!l+.ii lpf + UL + O(M-1). 

The leading-order equations are 

The quantities 7 and 
velocity stream function in the free shear layer, a,, is defined as 

are given in (62)  and are functions only of @. The O(M$ 

Eliminating the pressure from (80) and using (81)' the leading-order governing 
equation for the velocity stream function is 

The boundary conditions which must be satisfied are 

p:+pi(Yub>@) as E+-a, ~ : + p o ( Y u O > @ )  as (++a. (83 b)  

The intersection regions at the crystal face and crucible bottom accommodate a 
simple exponential decrease of the velocity .iiyf(t, Qb), and the conditions on U,, and 
the pressure are 

U@f( f ; ,  @b) = u@f(t7 @pt) = 0 for 6, (84a) 
d ( 6 ,  @b) + l ) i ( Y d b ,  @b), $$(6> @t) @t) for f; < O ,  (84b, c, 

$):(6, @b) - f P o ( y a b ,  @b)> P:( t ,  @t) -Zpo(Yub,  @t) for 6 ' O .  ( 84d ,  

The governing equation (82) with the boundary conditions (83), (84) constitute a 
well-posed boundary value problem. As with the azimuthal velocity in the free shear 
layer, the governing equation involves variable coefficients and a numerical solution, 
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which treats the singularities at Qt and djb, is necessary. The important features of 
the free shear layer for a non-miform, axisymmetric magnetic field are: (i) that it 
involves a very strong O(Mz) internal meridional circulation, which provides 
vigorous local mixing and a barrier to heat and mass transfer between the core 
regions: and (ii) that it matches the jump in pressure (84) between the core regions. 

5. Results for two simple shaped magnetic fields 
In this section, we consider two field configurations corresponding to field case 11. 

The first field configuration is the simplest non-uniform axisymmetric magnetic field 
that satisfies (2), (3) ,  and has the dimensionless form 

r 
2 d  

, B,(r,z) = -, 

r2 

2 ( :b) 
Y(r ,z)  = - l-- , d j ( r , z )  = z 1-- +-. ( 2zb) i i b  

Here, b is the non-dimensional melt depth, and a is some constant. The value of a is 
taken to be greater than one, so that the axial magnetic field component is always 
positive, and there is no point where B = 0. The smallest value of the magnetic field 
occurs at  r = 0 and z = b,  where the dimensional field strength is B,(l- l/a). This 
minimum field strength must be greater than 0.2T so that the inertialess 
approximation is valid everywhere. Figure 2 ( b )  illustrates the magnetic field 
configuration for a = 1.4. 

Using (45a), (46u) and (85c),  the functions R(r) and p(r,  z )  can be determined by 
finding the magnetic streamline which is at the radial coordinate T at z = b. Here, 

Y(r ,b )=  Y,=:(a-l)  for O G r G a ,  
201 

Throughout this section, we will use Yt to denote a particular magnetic streamline 
which intersects both the crystal face and the crucible. 

The current stream function, hl is given by (56) .  With the magnetic field 
configuration (85)  together with the coordinate values (86b ,  c ) ,  the boundary 
condition (55c) on the current stream function at  z = b determines the coefficients 
A,, where 

Here, y = GMaBJr, b)  = M u ( a -  l)/a is the ratio of the local electrical resistances 
and J, is the second-order Bessel function of the first kind. For the magnetic field 
configuration (85) ,  the axial component of the magnetic field is constant at the 
crystal face, and y is then constant for all r .  
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FIGURE 3. (a) Inner core angular velocity wi(!P) versus r at z = 6 for the field configuration (85). 
Here a = 0.4, b = 1.0, 01 = 1.4, 8 = -2.0 and y = 8.478. ( b )  Inner core velocity streamlines, G ,  for 
field configuration (85), with a = 0.4, b = 1.0, c( = 1.4, E -2.0 and y = 8.478. The circulation is 
clockwise with G < 0 for 0 < p < p( !Pab), with contour levels from -0.05 to 0 by 0.005. 

The angular velocity wi(ul) is given by (60), and a plot of wi versus r at z = b is 
presented in figure 3 ( a )  for a = 0.4, b = 1.0, a = 1.4, E = -2.0, y = 8.478. For R, = 
0.095 m and a = 1.4, y = 8.478 corresponds to B, = 0.7 T, or an axial field strength 
ofB,B,(r, b )  = 0.2 T at the crystal face. Near r = a, the value of wi( Ul) asymptotically 
approaches the value of wi for y 6 1. For the magnetic field (85) with a = 1.4, this 
value is wi = (a(€+ 1)-  1)/(2a- 1) = - 1.33. Near r = a, the electric current density 
sees the Hartmann layer as the lower-resistance path, since the crystal edge has an 
infinitely small area, and an infinitely large resistance. Thus, near r = a ,  most of the 
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current is in the top Hartmann layer, so that hj(r,  b )  is tending toward zero, and wi 
is approaching - 1.33. As r decreases from a ,  the fraction of current in the crystal 
increases, and wi tends toward a value of E .  

The behaviour of wi for other values of a, y and E is very similar to that of figure 
3(a). In  all cases, wi increases slowly from a value near 8 at the crystal centre to a 
value approaching wi = (a(€+ 1)- 1 ) / ( 2 a - l )  as T or Yt increases to a or Yab, 
with the largest change in oi taking place near the crystal edge. 

The velocity stream function C( Y, @) given by (78a) can be evaluated along each 
streamline Y,. To perform the integrations over the dummy variable @*, we rewrite 
the variable dependence of @* in terms of the radial and axial coordinates, while 
requiring that the integrand is evaluated along a fixed magnetic streamline, Y,. 
Using (14),  (46e), (85) and ( 8 6 4 ,  

d@ = &(p, 2) dp+B,(p, 2) dz, 

With the notation of (75d, e ) ,  there are four integrals which must be evaluated, 
namelyfl(Yt, Q,),fl(Yt, Qt),f2(Yt, @), andf,(Yt, @J, with @,, = @,, denoting the value 
of @ at which the magnetic streamline Yt contacts the crucible bottom at z = 0, and 
Qt denoting the value of Q, at which the magnetic streamline Y, contacts the crystal 
face at z = b. Using the field configuration (85) ,  the radial coordinate along Y, ( 8 6 4 ,  
and the change of variables (88), the four integrals are evaluated in z ,  where 

The values offi andf, at  @, are given by (89) evaluated at  z = b. The velocity stream 
function (78a) is 

G P t ,  @I = G( yt, 4 

The velocity streamlines for a = 1.4, a = 0.4, b = 1.0, y = 8.478, and E = -2.0 are 
shown in figure 3 (b ) .  The circulation is clockwise, with the sign of Q and the direction 
of circulation dependent on the sign of wi. For the field configuration (85) ,  wi is always 
increasing with increasing Y. Thus, while wi may be positive or negative depending 
on the value of E ,  the value of dw,/d!P is always positive. For corotation ( E  > 0) the 
direction of the circulation will be reversed, or counterclockwise, from that of 
counter-rotation ( 6  < 0). 

The primary circulation for the field configuration (85), and all values of E ,  a, and 
y ,  is a cell which closely follows the magnetic streamlines in the inner core, with flow 
either radially outward (clockwise circulation) or radially inward (counterclockwise 
circulation) near the crystal edge. The large circulation present near the crystal edge 
is due to the large change of oi which occurs over the outer half to one-quarter of the 
inner core. For counter-rotation, the inner core flow involves direct flow from the 
crucible bottom to the crystal face, with the magnitude of the flow increasing for 
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increasing T and directed almost tangent to the magnetic streamlines. The flow 
completes its circuit downward through the free shear layer near the magnetic 
streamline Yab. For corotation, the circulation is reversed or counterclockwise, and 
the flow travels up from the crucible bottom through the free shear layer, to the 
crystal edge. The flow circulation spreads radially inward and axially downward, 
with the velocity streamlines almost tangent to the magnetic streamlines in the inner 
core. The results for other values of a and y are qualitatively similar. For any a and 
y ,  the circulation direction changes with a change in sign of the differential rotation 
6, and the magnitude of the circulation increases with increasing 161. 

The second configuration considered for the field case 11 is more complex than the 
magnetic field (85) ,  and incorporates an axial field component which varies with r a t  
z = b. The dimensionless magnetic field considered is of the form 

B,(r,z) = ~ + ~ K T ~ - ~ K Z ' ,  B,(T,z) = U r z ,  (91% 6) 

u/ ( r , z )  = &r2+l&r4-2Kr2z2, @ ( r , z )  = z + 2 K r 2 z - ~ z 3 ,  (91c, 4 
where K is a constant. The minimum dimensional field strength is B,( 1 - 4Kb2),  which 
must be greater than or equal to 0.2 T. As no stagnation points in the magnetic field 
are allowed for field case 11, the field (91) is restricted to having only a positive axial 
field component, so that K > 1/4b2. 

Using (45a), (46a), (91 c), the functions R(T) and p(r, z )  are found by determining 
the value of the magnetic streamline at  ( r ,  b) .  Here, 

Y(r, b )  = Y, = L&r4 +Kg(b)r2,  0 < Yt < Yab, (92a) 

(92 b )  

(92c) 

(924  

g(2 )  = ( 1  -4Kz2)/2K. (92e) 

r = { - g ( b )  + ( g ( b ) 2  + 2!Pt/K)i}i, 

R = { - g ( O )  + (g(0)' + 2 !Pt/K)i)i, 

p = { - g(z) + (g(2)' + 2Yt/K)y, 

The current stream function (56) can be determined using the boundary condition 
(55c) ,  with the field configuration (91) and the coordinate values (92). The coefficients 
A ,  are approximately 

C,I,  + c, I ,  + c, I ,  A =-( a2C, Ji(X,)  + C, I ,  

where 

C, = KGMg(0) g ( b )  +x, ("'"'2-'"), 

I ,  = Lpm(r)J'(-)dr Xn r with q3(r) = r2,  q4(r) = r 4 ,  q 6 ( r )  = r6 

(93) 

The integrals I ,  for m = 3, 4, 5 can be expressed analytically using recurrence 
relations for Bessel functions (Abramowitz & Stegun 1970), while the integral I, is 
evaluated numerically. 

With the coefficients (93), the angular velocity o,(Y) can be determined for the 
magnetic field configuration (91). Figure 4(a-c) presents plots of wi for 6 = 3.0, 

2 YLM 249 
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FIGURE 4. Inner core angular velocity wi( u) versus r a t  z = b for the field configuration (91), with 
K = 0.2 (----), 0.215 (-), 0.222 (......). The value of HS for each K-value corresponds to a 
silicon melt with a 0.2 T field a t  the centre of the crystal face, with b = 1.0 and a = 0.4. (a) E = 3.0; 
( b )  E = 0.5; (c) E = -3.0. 
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FIQURE 5 .  Crystal electric current stream function versus r a t  z = b, plotted with ( F -  1)R2 (----) 
for field configuration (91), for B = -3.0 with (a) K = 0.2, and ( b )  K = 0.222. 
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0.5, and -3.0, respectively. On each plot the results for three magnetic field 
configurations corresponding to (91) with K = 0.2,0.215, and 0.222, are shown with 
a non-dimensional melt depth b = 1.0. The value of M6 for each case corresponds to 
silicon with a 0.2 T field at the centre of the crystal face. For any axisymmetric field 
configuration, the angular velocity approaches a value corresponding to that for 
y << 1 as r - ta .  Near r = 0, the angular velocity approaches the value of B .  

Examination of figure 4(a-c) shows that over a large range of r ,  oi stays relatively 
constant, with a value near E .  The value of y ( r )  is less for lower K-values over the 
entire range in r ,  and the deviation from rotation with the crystal begins at a smaller 
value of r for K = 0.2 than for K = 0.222. This behaviour is evident in the plots of 
the crystal electric current stream function at z = b for B = -3.0 and K = 0.2, 0.222 
shown in figure 5(a ,  b) .  These plots also include (e- 1)R2, which is the value of the 
crystal electric current stream function for y + 1. For K = 0.2, this current stream 
function deviates from (e-l)R2 by 30% at T = 0.2, but by 93% at r = 0.3. For 
K = 0.222, the deviation from (8- 1)R2 is 25 % at r = 0.2, and increases to 33 % at 
r = 0.3. 

The velocity stream function G(@, Y )  given by (78a)  can be evaluated in a manner 
similar to that for the first field case considered, although the integration of the 
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FIGURE 6. Inner core velocity streamlines, G, for field configuration (91) with K = 0.2, B, = 1.0 T, 
a = 0.4, b = 1.0 and 0 < p < p(Yab) .  (a)  t- = 3.0, circulation is clockwise, with contour levels from 
-0.01 to 0 by 0.005; (a) 6 = 0.5, circulation is counterclockwise, with contour levels 0 to 0.01 by 
0.001; (c) B = -3.0, circulation is clockwise, with contour levels -0.01 to 0 by 0.005. 

functions fi and f2 must be done numerically. For the field case (91), the variable 
dependence on @ is rewritten so that the integration is along constant Yt. Using 
(46 e )  > 

d@ = B,(p, z)-dz+B,(p,  aP Z )  dz a% 
B2 

= - dz along constant Y,. 
Bz 

With (94), the integrals ( 7 5 d , e )  can be written as 

fi(YtYt,Z) = 1 -2B, p4 dz* along Yt constant, 

r z  -2 

fi( Yt, z )  = J o k d z *  along Y, constant. 

(94) 

(95) 

The integrals fi( Yt, a,) and f2( Yt, @J are the integrals of (95), (96) evaluated from 
z = 0 to z = b. 

The velocity streamlines G( Y,, z )  are shown in figure 6(a-c) for E = 3.0, 0.5, and 
-3.0, for the magnetic field configuration (91) with K = 0.2. The direction of the 
circulation is always clockwise for the rotation rates E < 0 and E > 1. This behaviour 
is controlled by the dependence of the velocity stream function on wi and dwJdY. As 
illustrated in figures 4 (a)  and 4 (c ) ,  wi increases for counter-rotation, and decreases for 
corotation when e > 1. This means that the product of widwi/dY is negative for 
c < 0 and c > 1 .  With G( Y, @) defined by (78a) ,  the net sign of G for these two ranges 
of c will yield G < 0, or clockwise circulation. The only possibility of counterclockwise 
circulation is for 0 < E < 1,  or small corotation, with the field configuration (91). 
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The changes in velocity stream function with increasing K ,  for a fixed value of 
e < 0 or B > 1, are: (i) a small increase in the dimensionless magnitude of the 
circulation ; (ii) a compression of the circulation cell toward Y = Yab ; and (iii) a shift 
of the !Pa, streamline toward the centreline. The increase in dimensionless circulation 
magnitude is a result of the increase in dwi/dY as K increases from 0.2 to 0.222. The 
compression of the circulation cell near the !Pa, magnetic streamline is a result of the 
relatively flat wi profile. For increasing K-values, the angular velocity is almost 
constant for an increasing range of the magnetic streamlines contacting the crystal 
face. It is only near the outer one-third or one-quarter of the fieldlines contacting the 
crystal face that any significant deviation occurs from wi - e when K = 0.215 or 
0.222. With the variation of wi concentrated at  magnetic streamlines near the crystal 
edge, the meridional circulation will be concentrated along these same magnetic 
streamlines for 0 < z < b.  As K increases, the radial spread of the magnetic 
streamlines increases between x = 0 and z = 6 ,  and the magnetic field lines near the 
crystal edge move to a corresponding radial position which is closer to the centreline 
at  z = 0. This results in a larger radial component of velocity near the crystal face, 
where the radial velocity is directed either radially outward (clockwise circulation) 
or inward (counterclockwise circulation). As 161 is made larger, the dimensionless 
circulation magnitude increases slightly. This behaviour is simply related to the 
increase in IwJ. For large differential rotation of the crystal, this will produce a larger 
radial component of flow near the crystal face. 

6.  Discussion 
We have considered the isothermal rotationally driven flow in a model CZ crystal 

growth system with an applied non-uniform axisymmetric magnetic field. There are 
several characteristics of the isothermal flows driven by differential rotation in a CZ 
silicon crystal growth system which indicate the potential for improved crystal 
quality by using a shaped magnetic field. The analysis presented in this paper 
identifies two categories of non-uniform, axisymmetric fields, only one of which will 
produce the O( 1 ) meridional circulations driven by differential rotation. 

Field case I is a field configuration for which there are no magnetic field lines which 
contact both the crystal and any crucible boundary. The inner core region is bounded 
by the centreline, crystal face, a portion of the free surface, and the dividing 
magnetic field line Y = 0 which extends from r = 0 to a point on the free surface. The 
outer core region is bounded by the centreline, crucible boundaries, a portion of the 
free surface, and the dividing magnetic field line Y = 0. The analysis shows that the 
inner and outer inviscid core regions are in rigid-body rotation with either the crystal 
rotation rate e in the inner core, or crucible rotation rate of 1 in the outer core. The 
inviscid core solutions are given by (43), (44) and (66). For this field configuration, 
no O(1) core or Hartmann-layer meridional flows are present. The only meridional 
flow is contained entirely within the free shear layer which separates the two inviscid 
core regions. The free shear layer analysis for field case I is equivalent to that 
presented for field case I1 in $53 and 4. The leading-order volume flow, confined to 
the free shear layer, is O(&). 

For field case 11, when there are magnetic field lines which contact both the crystal 
and any portion of the crucible, there is an O(1) meridional circulation in the inner 
core in the melt region bounded by the magnetic field through the crystal edge. The 
magnetic field and melt interaction requires that the electric current density be along 
magnetic field lines, and that the O(1) angular velocity in the inner core region be 
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constant along magnetic field lines. It is only with this field case I1 configuration that 
the centrifugal acceleration is dependent on the magnetic field configuration. For the 
rigid-body rotations of field case I, the pressure gradients parallel and perpendicular 
to the magnetic field lines exactly balance the centrifugal acceleration, and no O( 1) 
Lorentz force is required for force balance in the inviscid core regions. For field case 
11, the pressure gradient parallel to magnetic field lines must balance the component 
of centrifugal acceleration parallel to the magnetic field lines. However, this restricts 
the pressure gradient perpendicular to the magnetic field lines, and this component 
of the pressure gradient cannot balance the centrifugal acceleration in this direction. 
This imbalance drives an O(1) volume flow in the inviscid inner core region where 
magnetic field lines intersect solid boundaries which are rotating with different 
angular velocities. The associated O( 1) Lorentz force provides the balancing force. 
The inner core solutions are given by (38), (40), (60) and (78). The inviscid outer core 
region continues to have an azimuthal velocity described by a rigid-body rotation, 
with solutions (44) and (66). 

The O( 1) meridional circulation is not present when the applied field is a uniform 
axial magnetic field, where the leading-order flow driven by differential rotation is 
O(M-l). This type of field is a singular limit of the generalized axisymmetric field 
analysis presented in this paper. For the O( 1) azimuthal velocity which is a function 
only of r ,  the radial pressure gradient can exactly balance the radially directed 
centrifugal acceleration in the inviscid core regions. It is only at  O(M-') that an axial 
variation of the centrifugal acceleration is present in the inviscid inner core, which 
cannot be balanced exactly by the radial pressure gradient. 

Two case I1 field configurations are considered. The results for the first field, given 
by (85), show that wi( !P) is always increasing for increasing Y or, equivalently, for 
increasing r .  The limiting values between which wi (u )  varies on a fixed magnetic 
streamline are E near Y = 0 and wi = (a(~+1)-1)/(2a-l) when y < 1,  near !P= 
!Pub. The limiting value for y 4 1, for the first field (85)  is always greater than E .  This 
behaviour determines the direction of circulation for the O( 1) meridional flows given 
by (90). Since wi( u) is increasing with increasing Y for every value of E ,  the overall 
sign of G( Y, @) is positive for e > 1 and 1 > E 2 0, with counterclockwise circulation, 
and negative for E < 0 with clockwise circulation. 

For the second field configuration, given by (91), the behaviour of wi(!P) again 
determines the overall sign of the velocity stream function. For E < 0, wi( !P) increases 
with increasing Y or r,  and the velocity stream function is negative, with clockwise 
circulation. For 8 > 1, wi( Ul) decreases with increasing Y, and the velocity stream 
function is negative, with clockwise circulation. It is only for the range of small 
differential rotations 0 d e < 1 that the velocity stream function is positive with 
counterclockwise circulation, as wi( !P) is positive and increasing with increasing Y. 

For both field configurations, the velocity stream function is almost tangent to the 
magnetic field lines in the inner core. Near the crystal face, for counterclockwise 
circulation, the flow exits the free shear layer and top Hartmann layer near Pub, and 
spreads radially inward and axially downward into the inner core. For clockwise 
circulation, the flow moves axially upward toward the crystal face, closely following 
magnetic streamlines, converging near the crystal face, and entering the free shear 
layer near the !Pa, magnetic streamline. 

The presence of O( 1) circulations driven by differential rotation will affect both the 
heat and mass transfer in the inner core, the Hartmann layers on the crystal face and 
crucible bottom, and the free shear layer. For heat transfer, the convective heat 
transfer due to the O(1) flows driven by the differential rotation can no longer be 
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ignored as small, as is the case for the axial field (Hjellming & Walker 1987). Even 
with the non-uniform axisymmetric field, the buoyancy-driven circulation will be 
counterclockwise, with hot fluid rising along the vertical crucible wall and falling 
under the crystal. The thermocapillary flows, driven by the variation of surface 
tension with temperature, are present only in the region bounded by the free surface. 
This flow also represents a counterclockwise circulation. For field case I1 
configurations in which the magnetic field lines contact the crystal face and crucible 
bottom, this will be the region for which Y > !Pa,. The area under the crystal, where 
Y <  will have convective heat and mass transfer due to the flows driven by 
buoyancy and differential rotation. The outer core region with Y > Y,,, vertical wall 
layer, free surface and crucible bottom Hartmann layers will have convective heat 
and mass transfer due to the flows driven by thermocapillarity and buoyancy. These 
two regions of the melt will be separated by the free shear layer along the Yab 
magnetic field line. 

In the region bounded by the centreline, crystal face, crucible bottom and the !Pa, 
magnetic field line, the O(1) differential rotation driven circulation will either : (i) 
introduce a larger vertical temperature variation if the circulation is clockwise and 
opposing the buoyancy-driven flow, or (ii) introduce a larger radial temperature 
variation if the circulation is counterclockwise and reinforcing the buoyancy-driven 
flow. 

The mass transport in this inner region is more difficult to assess. Since the 
diffusivities of most mass species in silicon are small, there is only convective mass 
transport within the inner core, and convective and diffusive mass transport in the 
crystal face diffusion boundary layer. The convective mass transport in the crystal 
face diffusion layer must provide sufficient circulation to produce a uniform radial 
concentration of dopants and impurities at the growth interface. In addition, as 
crystal growth proceeds and the melt depth is depleted, any depth dependence of the 
combined flow field driven by buoyancy and differential rotation must be taken into 
account. Such changes in the melt flow with time may adversely affect the axial 
variation of dopant and impurity levels in the growing crystal, as well as influence 
the radial distribution of dopants and impurities (Hjellming 1990 ; Hjellming & 
Walker 1988b). 

Although the thermally driven flow problem has not been addressed in this paper, 
some conclusions may be drawn for the shaped field case by comparison to the axial 
field results of Hjellming & Walker (1987) and Hjellming (1990). For both a shaped 
field and an axial field, the thermally driven flows will be O( 1),  with the buoyancy- 
driven flows having a characteristic velocity of 

U, = po ga AToI~B: .  

Here, a is the coefficient of thermal expansion (a = 1.41 x K-'), and AT, is a 
characteristic temperature difference (approximately 25-50 K). 

The results for the axial field indicate that the non-dimensional inner core 
circulation driven by buoyancy is decreasing with increasing magnetic field strength 
as the melt becomes conduction dominated. The convective heat transfer provided 
by buoyancy in the inner core, and by buoyancy- and thermocapillary-driven flows 
in the outer core region, is strongest for low field strengths and large depths 
(Hjellming 1990). If the magnetic field magnitudes of the field configurations (85) 
and (91) are used, the melt will probably be conduction dominated if only the 
thermally driven flow is present. Using the dimensional magnitude of the buoyancy- 
driven circulation in a conduction-dominated melt yields an inner core buoyancy- 
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driven circulation which may be 10-20 times smaller than the O(1) inner core 
circulation driven by differential rotation with the shaped field case 11. It is then 
anticipated that the convective heat transfer in the inner core region provided by 
this new 0(1) circulation will dominate that provided by the buoyancy-driven 
circulation, even at large depths where the buoyancy-driven flows in the inner core 
region are maximum (Hjellming 1990). Similarly, the disparity in circulation 
magnitude between the buoyancy-driven flow and rotationally driven flow in the 
inner core region suggests that the rotationally driven flow will also dominate 
convective mass transfer throughout the inner core and surrounding viscous layers. 
However, since the entire flow field will be a superposition of the two flows, both the 
direction and magnitude of the total flow field will be important. 

It should also be noted that the depth dependence of the rotationally driven flows 
is confined to  any depth dependence of the field configuration, as indicated by (78a). 
One advantage of the shaped field is the ability to change the field configuration 
during the entire growth process, not just in magnitude but also in direction. This 
flexibility is available only with the field magnitude when uniform transverse or axial 
magnetic fields are used. Since it appears that the O( 1 )  rotationally driven circulation 
closely parallels the magnetic field lines, tailoring the flow throughout the growth 
process with changes in the field configuration is possible. 

With the shaped magnetic field there is a substantial increase in the inner core 
circulation, the ability to tailor the rotationally driven flows along magnetic field 
lines at every melt depth, and vary the direction of this circulation, as the direction 
of the circulation is determined by the ratio of the angular velocity of the crystal to 
that of the crucible and magnetic field configuration through the relationships (60), 
(94). These features may introduce the mechanism for control of the heat and mass 
transport to the growth interface lacking in the uniform axial and transverse 
magnetic fields. 

While the free shear solutions for the azimuthal and meridional problem are not 
presented, the free shear layer position and structure will play an important role in 
the mass transfer of oxygen and other impurities introduced through the ablation of 
the crucible. The leading-order circulation due to the variation of the centrifugal 
acceleration within the free shear layer is O(&), with this flow entirely contained 
within the free shear layer. From the axial field analysis of Hjellming & Walker 
(1987), the leading-order circulation within the free shear layer produced by the 
presence of thermocapillary flows is O ( l ) ,  with an O(Mi) axial velocity within the 
O(M-i) free shear layer. This order of magnitude will hold for the shaped field as well. 
Since the free shear layer circulation due to the differential rotation is O(&) larger 
than that for thermocapillarity, one possible effect of this order of magnitude 
difference may be the blockage of oxygen-depleted fluid carried by thermocapillary 
flow along the free surface toward the crystal edge. In addition, given the direction 
of the rotationally driven flows, supplemental oxygen may be carried toward the 
crystal edge from the crucible bottom, creating a large concentration variation across 
and within the free shear layer. 

For some field configurations, the thermocapillary flow will not be as strongly 
suppressed as it is with a uniform axial field, if the radial component of the shaped 
magnetic field is significant at  the free surface, and the axial field component is 
reduced. This may result in an increased evaporation of oxygen carried by a larger 
volume of fluid travelling near the free surface, thus decreasing the overall oxygen 
level in the melt volume. 

Also of interest with respect to the free shear layer and inner core circulations, 
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particularly for the two field cases (85) and (91) considered, is the decrease in the 
surface area exposed to direct flow from the crucible bottom to the crystal face. Since 
a magnetic field which spreads radially as z increases has a dividing magnetic 
streamline Yab which contacts the crucible bottom at R( !Pub) < a ,  where a is the non- 
dimensional crystal radius, the vigorous free shear layer flows and bottom Hartmann 
layer flow have a reduced contact surface area a t  the crucible bottom, compared to 
a magnetic field which converges radially as z increases, with R( Yab) > a.  This factor 
may be important in the transfer of oxygen directly from the crucible bottom to the 
crystal face (Tolley 1991). 

If one considers a field configuration such as that used by Hirata & Hoshikawa 
(1989), there will be two free shear layers, one along the stagnation streamline Y = 0 
from the centreline to  r = 1, and another along the dividing streamline !Pa, which 
contacts the crystal face and the vertical crucible wall above the Y = 0 line and 
below the point r = 1 and x = 6.  This configuration will isolate the inner core region 
from the crucible bottom and free surface. With the large radial field component at  
the free surface, the thermocapillary flows are not highly suppressed, and the free 
shear layer along !Pub will provide a barrier to direct convective mass transfer of 
oxygen-poor fluid to the crystal edge. However, there is probably direct flow along 
the magnetic streamlines from the vertical crucible wall to the crystal face, with the 
O(M-') Hartmann layer now on the vertical wall a t  r = 1. 

This work was supported by the National Science Foundation under grants DDM- 
8957129 and CBT-8815672. 
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